

#### Energy and heat transfer research at the UT (Thermal Engineering)





# **Research lines in Thermal Engineering**



#### From fundamental research to applications Fuel conversion processes



TGA: thermogravimetric analyser

#### From fundamental research to applications Turbulent combustion and thermo-acoustics



#### From fundamental research to applications Convective heat transfer





# New heat exchange materials

Experimental research to heat transfer enhancement by carbon nano fibers

Numerical research to optimize topology and morphology of the carbon nano fibers layer



# New heat exchange material



- High porosity (up to 97%)
- Surface area up to 1m<sup>2</sup>/g
- High thermal and electrical conductivity
  - Relatively low flow resistance





# Nickel foam with 10 wt% of carbon nano fibers





## Experimental set up for heat transfer measurements



- Channel flow (size of the measurement section: 20mm X 10mm X 100 mm)
- Constant wall temperature (controlled by recycling hot water)
- Wall (copper plates) temperature and the temperature behind foams measured

# Heat transfer and pressure drop



Heat transfer and flow resistance of channel flow with metallic foams with different wt% of CNF's

Main result: 10wt% CNF's gives highest heat transfer, but not highest pressure drop.



#### Heat exchangers and regenerators in heat pumps





Heat exchanger

Regenerator



# Carbon Nano-Fibers attached on Ni surface



**Carbon Nano Fibers** 



0

### How to grow CNF's: Cataytic Vapor Deposition Process





### CNFs growth using CVD mechanism





#### Growth structure



Straight

Curled (spaghetti) shaped



# **Research objectives**

- Identifying the optimal heat transfer characteristics of CNFs and CNTs.
  - ➢ Morphology and topology of the CNF's.
  - > Thermal properties of CNFs.
- Studying the trade-off between the heat transfer and pressure drop will be studied for a complete heat pump system.





#### Assembly of structural units of CNFs





# **Experimental approach**



Wheatstone brigde Circuit





# Numerical approach: Lattice Boltzmann

Boltzmann Equation

$$f_a(\vec{r}, \vec{v}) = \rho(\vec{r}) \left[ \frac{m}{2\pi T(\vec{r})} \right]^{\frac{3}{2}} exp \left\{ \frac{-m[\vec{v} - \vec{v_0}(\vec{r})]^2}{2kT(\vec{r})} \right\}$$

Discretized Boltzmann Equation (Lattice Boltzmann Equation)

$$f_a(\mathbf{x} + \mathbf{e}_a \Delta t, t+1) = f_a(\mathbf{x}, t) - \frac{\left[f_a(\mathbf{x}, t) - f_a^{eq}(\mathbf{x}, t)\right]}{\tau}$$

# Carbon Nano-Fibers attached on Ni surface



Fiber orientation

Fibers grown with stochastic model



## Heat Transfer

- Laminar Flow
- Inlet Temperature 320 K
- Walls Temperature 276 K
- Grid Size
  61x61x300



Introduction Validation Results Conclusions Acknowledgments

# Heat Transfer

 $\frac{T_c}{T_{max}}$  Centerline Temperature Profile Along the Channel





### **Conjugate Heat Transfer**

- Laminar Flow
- Inlet Temperature 320 K
- Walls Temperature 276 K

**UNIVERSITY OF TWENTE.** 

Grid Size
 61x61x300





Introduction Validation Results Conclusions Acknowledgments



### Conjugate Heat Transfer

 $\frac{T_c}{T_{max}}$  Centerline Temperature Profile Along the Channel







Carbon Nano-Fibers Attached at a Bottom of a Micro-Channel

UNIVERSITY OF TWENTE.

**Enlarged Carbon Nano Fibers** 



**UNIVERSITY OF TWENTE.** 

0



Isocontour velocity and temperature profile through the CNF's layer at the center layer from the side of the channel





Density Influence on the Heat Transfer



#### Conclusions

- An experimental set up has been designed for measurements of heat transfer to a cylinder in cross flow
- A stochastic model for three-dimensional CNF's structural description is developed.
- A three-dimensional fluid-dynamic and thermal-dynamic numerical code has been developed for the prediction of the thermal behavior of the CNF's attached to a wall using the lattice Boltzmann equation.
- The predicted thermal behavior of the CNF's shows that there is a high heat transfer enhancement through the CNF's layer.
- Future research: Simulations with a higher Reynolds number.